Skip to main content
Log in

A conceptual model of salt marsh plant distribution in coastal dunes of southeastern Spain

  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

The main objectives of this study were to identify a small of edaphic factors that could be related to vegetation distribution in a coastal dune salt marsh system in the Southeast of Spain and to establish a simple conceptual model to describe the relationships between these soil factors and the main plant communities. Soil and vegetation data were obtained from 87 sampling plots. The plant communities studied were dominated by Crucianella maritima, Teucrium dunense, Ammophila arenaria, Lygeum spartum, Schoenus nigricans, Juncus maritimus, Limonium cossonianum, Sarcocornia fruticosa, Arthrocnemum macrostachyum, and co-dominance of Sarcocornia fruticosa and Arthrocnemum macrostachyum. The first four communities occupied summit positions and the rest of communities interdune depressions. In addition, we sampled plots in bare soil at interdune depressions. The soil parameters studied were soil salinity, soil moisture, the ground-water level, the depth to gleyed matrix, and the distance to the shoreline. Soils at interdune depressions were consistently more saline, wetter, and with a shallower water table and gleyed matrix than soils at summit positions. Soil moisture, salinity, and the distance to the shoreline were parameters related to plant distribution at summit positions. However, at interdune depressions species distribution was mainly related to salinity, moisture, the depth of the ground water, and the depth to gleyed matrix. In the conceptual model proposed, bare soils are characterized by their extreme salinity in the growing season (spring) and a shallower ground-water level, which leads to a shallower gleyed matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Adams, D. A. 1963. Factors influencing vascular plant zonation in North Carolina salt marshes. Ecology 44: 445–456.

    Article  Google Scholar 

  • Alcaraz, F. and M. J. Delgado. 1998. Thyme-brushwood communities (‘tomillares’) of semiarid South-eastern Spain. Phytocoenologia 28: 427–453.

    Google Scholar 

  • Álvarez-Rogel, J., F. Alcaraz, and R. Ortiz. 2000. Soil salinity and moisture gradients and plant zonation in Mediterranean salt marshes of Southeast Spain. Wetlands 20: 357–372.

    Article  Google Scholar 

  • Álvarez-Rogel, J., J. Hernández, R. Ortiz, and F. Alcaraz. 1997a. Patterns of variation in soil salinity: example of a salt marsh in SE of Spain. Arid Soil Research and Rehabilitation 11: 315–329.

    Google Scholar 

  • Álvarez-Rogel, J., R. Ortiz, and F. Alcaraz. 1997b. Suelos, vegetatión y gradiente edáfico en un saladar costero del sureste de España. Edafología 3: 257–269.

    Google Scholar 

  • Álvarez-Rogel, J., R. Ortiz, and F. Alcaraz. 2001. Edaphic characterization and soil ionic composition influencing plant zonation in a semiarid Mediterranean salt marsh. Geoderma 99: 81–98.

    Article  Google Scholar 

  • Amiaud, B. A., J. B. Bouzillé, F. Tournade, and A. Bonis. 1998. Spatial patterns of soil salinities in old embanked marshlands in Western France. Wetlands 18: 482–494.

    Article  Google Scholar 

  • Barbour, M. G. 1978. The Effect of Competition and salinity on the Grow of Salt Marsh plant species. Oecology 37: 93–97.

    Article  Google Scholar 

  • Bertness, M. D. and A. M. Ellison. 1987. Determinations of pattern in a New England salt marsh plant community. Ecological Monographs 57: 129–147.

    Article  Google Scholar 

  • Bouzillé, J. B., E. Kernéis, A. Bonis, and B. Touzard. 2001. Vegetation and ecological gradients in abandoned salt pans in western France. Journal of vegetation Science 12: 269–278.

    Article  Google Scholar 

  • Braun-Blanquet, J. 1979. Fitosociología. Bases para el estudio de las comunidades vegetales. Ed. Blume. Madrid, Spain.

  • Brewer, J. S., T. Rand, J. M. Levine, and M. D. Bertness. 1998. Biomass allocation, clonal dispersal, and competitive success in three salt marsh plants. Oikos 82: 347–353.

    Article  Google Scholar 

  • Brinson, M. M. and R. R. Christian. 1999. Stability of Juncus roemerianus patches in a salt marsh. Wetlands 19: 65–70.

    Article  Google Scholar 

  • Callaway, R. M. 1995. Positive interaction among plants. The Botanical Review 61: 306–349.

    Article  Google Scholar 

  • Callaway, R. M. and L. R. Walker. 1997. Competition and facilitation: a synthetic approach to interactions in plant communities. Ecology 78: 1958–1965.

    Article  Google Scholar 

  • Castroviejo, S., M. Lainz, G. López González, P. Monserrat, F. Muñoz Garmendia, J. Paiva, and L. Villar (eds.). 1986–1993. Flora Ibérica, vols. 1 to 4. Real Jardín Botánico. CSIC, Madrid, Spain.

    Google Scholar 

  • Chang, C., T. G. Sommerfeldt, J. M. Carefoot, and G. B. Schaalje. 1983. Relationships of electrical conductivity with total dissolved salts and cation concentrations of sulfate dominant soil extracts. Canadian Journal of Soil Science 63: 79–86.

    CAS  Google Scholar 

  • Chapman, V. J. 1974. Salt Marshes and Salt Deserts of the World 2nd edition. Verlag Von J. Cramer, Lehre, Germany.

    Google Scholar 

  • Denslow, J. S. and L. L. Battaglia. 2002. Stand composition and structure across a changing hydrological gradient: Jean Lafitte National Park, Loussiana, USA. Wetlands 22: 738–752.

    Article  Google Scholar 

  • Eleuterius, L. N. and J. D. Caldwell. 1985. Soil characteristics of four Juncus roemerianus populations in Missisipi. Gulf Research Reports 8: 9–13.

    Google Scholar 

  • FAO (Food and Agriculture Organization). 1998. World Reference Base for Soil Resources. Food and Agriculture Organization of the United Nations/International Society of Soil Science/International Soil Reference and Information Centre, Rome, Italy.

    Google Scholar 

  • Finlayson, C. M. 1996. Framework for designing a monitoring programme, p. 25–34, In P. T. Viver (ed.) Monitoring Mediterranean Wetlands: a Methodological Guide. Wetlands International, Slimbridge, UK Instituto da Conservaçao da Natureza, Lisbon, Portugal.

    Google Scholar 

  • García, L. V., T. Marañón, A. Moreno, and L. Clemente. 1993. Above ground biomass and species richness in a Mediterranean salt marsh. Journal of Vegetation Science 4: 417–424.

    Article  Google Scholar 

  • Grillas, P. 1996. Identification of indicators. p. 35–59, In P. T. Viver (ed.) Monitoring Mediterranean Wetlands: a Methodological Guide. Wetlands International, Slimbridge, UK. Instituto da Conservaçao da Natureza, Lisbon, Portugal.

    Google Scholar 

  • Hackney, C. T., S. Brady, L. Stemmy, M. Boris, C. Dennis, T. Hancock, M. O’Bryon, C. Tylton, and E. Barbee. 1996. Does intertidal vegetation indicate specific soil and hydrological conditions. Wetlands 16: 89–94.

    Article  Google Scholar 

  • Hellawell, J. M. 1986. Biological Indicators of Freshwater Pollution and Environmental Management. Elsevier, New York, NY, USA.

    Google Scholar 

  • Hickman, J. C. 1993. The Jepson Manual. Higher Plants of California. University of California Press, Berkeley, CA, USA.

    Google Scholar 

  • Ishikawa, S. I., A. Furukawa, and T. Oikawa. 1995. Zonal plant distribution and edaphic and micrometeorological conditions on a coastal sand dune. Ecological Research 10: 259–266.

    Article  Google Scholar 

  • Jogman, R. H. G., C. J. F. ter Braak, and O. F. R. van Tongeren (eds.). 1987. Data Analysis in Community and Landscape Ecology. Pudoc, Wageningen, The Netherlands.

    Google Scholar 

  • Levine, J. M., J. S. Brewer, and M. D. Bertness. 1998. Nutrients, competition and plant zonation in a New England salt marsh. Journal of Ecology 86: 285–292.

    Article  Google Scholar 

  • Mitch, W. J. and J. G. Gosselink. 1986. Wetlands. Van Nostrand Reinhold, New York, NY, USA.

    Google Scholar 

  • Munsell Corporation. 1994. Munsell Soil Colour Charts Revised Edition. Macbeth Division of Kollmorgen Instruments Corporation, New York, NY, USA.

    Google Scholar 

  • Nobuhara, H. 1967. Analysis of coastal vegetation on sandy shore by types in Japan. Japanese Journal of Botany 19: 325–351.

    Google Scholar 

  • Ortiz, R., J. Álvarez-Rogel, and F. Alcaraz. 1995. Soil vegetation relationships in two coastal salt marshes of southeastern of Spain. Arid Soil Research and Rehabilitation 9: 481–493.

    Google Scholar 

  • Otero, X. L. and F. Macias. 2001. Caracterización y clasificación de suelos de las marismas de la Ría de Ortigueira en relatión con su positión fisiográfica y vegetación (Galicia-NO de la Península Ibérica). Edafología 8: 37–61.

    Google Scholar 

  • Otte, M. L. 2001. What is stress to a wetland plant? Environmental and Experimental Botany 46: 195–202.

    Article  Google Scholar 

  • Payne, D. 1992. El comportamiento del agua en el suelo, en A. Wild (ed.) Condiciones del suelo y desarrollo de las plantas. Mundi Prensa. Madrid, Spain.

    Google Scholar 

  • Peinado, M., F. Alcaraz, and J. M. Martínez Parras. 1992. Vegetation of Southeastern Spain. J. Cramer, Berlín, Germany.

    Google Scholar 

  • Peinado, M., F. Alcaraz, J. L. Aguirre, J. Delgadillo, and J. Álvarez. 1995. Similarity of zonation within California-Baja California and Mediterranean salt-marshes. The Southwestern Naturalist 40: 388–405.

    Google Scholar 

  • Pennings, S. C. and R. M. Callaway. 1992. Salt marsh plant zonation: the relative importance of competition and physical factors. Ecology 73: 681–690.

    Article  Google Scholar 

  • Piernik, A. 2003. Inland halophilous vegetation as indicador of soil salinity. Basic and Applied Ecology 4: 525–536.

    Article  Google Scholar 

  • Pujol, J. A. 2002. Ecología de la germinación de semillas y del crecimiento de plántulas de especies halófitas del SE Ibérico. Instituto Municipal de Cultura “Joaquín Chapaprieta.” Alicante, Spain.

    Google Scholar 

  • Pujol, J. A., J. F. Calvo, and L. Ramírez-Díaz. 2000. Recovery of germination from different osmotic conditions by four halophytes from SE Spain. Annals of Botany 85: 279–286.

    Article  Google Scholar 

  • Richards, L. A. (ed.). 1974. Diagnóstico y Rehabilitatión de Suelos Salinos y Sódicos. Editorial Limusa, México.

    Google Scholar 

  • Sánchez, J. M., X. L. Otero, and J. Izco. 1998. Relationships between vegetation and environmental characteristics in a saltmarsh system on the coast of Northwest Spain. Plant Ecology 136: 1–8.

    Article  Google Scholar 

  • Simón, M. and I. García. 1999. Physico-chemical properties of the soil-saturation extracts: estimation from electrical conductivity. Geoderma 90: 99–109.

    Article  Google Scholar 

  • Snow, A. and S. W. Vince. 1984. Plant zonation in an Alaskan salt marsh. II. An experimental study of the role of edaphic conditions. Journal of Ecology 72: 669–684.

    Article  Google Scholar 

  • SSS (Soil Survey Staff). 1999. A Basic System of Soil Classification for Making and Interpreting Soil Surveys.

  • Second Edition. U.S. D.A. Natural Resources Conservation Service, Washington, DC, USA. Agriculture Handbook 436.

  • Statistix®. 1992. Analytical Software. Joan Siegel, St Paul, MN, USA.

    Google Scholar 

  • ter Braak, C. J. and F. P. Smilauer. 1999. Canoco for Windows v. 4.02. Centre for Biometry Wageningen CPRO-DLO, Wageningen, The Netherlands.

    Google Scholar 

  • Tiner, R. W. 1999. Wetlands Indicators. A Guide to Wetland Identification, Delineation, Classification, and Mapping. Lewis Publishers, CRC Press, Boca Raton, FL, USA.

    Google Scholar 

  • Tutin, T. G., V. H. Heywood, N. A. Burges, D. M. Moore, D. H. Valentine, S. M. Walters, and A. Webb (eds.). 1964–1980. Flora Europaea. Vols. 1–5. Cambridge University Press, New York, NY, USA.

    Google Scholar 

  • Ungar, I. A. 1998. Are biotic factors significant in influencing the distribution of halophytes in saline habitats. The Botanical Review 64: 176–199.

    Article  Google Scholar 

  • U.S. Department of Agriculture, Natural Resources Conservation Service. 2003. Field Indicators of Hydric Soils in the United States, Version 5.01. G. W. Hurt, P. M. Whited, and R. F. Pringle (eds.) USDA, NRCS in cooperation with the National Technical Committee for Hydric Soils, Fort Worth, TX, USA.

  • Valdés, B., S. Talavera, and E. Fernández Galiano. 1987. Flora Vascular de Andalucia Occidental. Vols. 1–3. Ketres, Barcelona, Spain.

  • Vepraskas, M. J. 2001. Morphological Features of Seasonally Reduced Soils. p. 163–182, In J. L. Richardson and M. J. Vepraskas (eds.) Wetlands Soils: genesis, hydrology, landscapes, and classification. Lewis Publishers, New York, NY, USA.

    Google Scholar 

  • Woerner, L. S. and C. T. Hackney. 1997. Distribution of Juncus roemerianus in North Carolina tidal marshes: the importance of physical and biotic variables. Wetlands 17: 284–291.

    Google Scholar 

  • Zedler, J. B., J. C. Callaway, J. S. Desmond, G. Vivian-Smith, G. D. Williams, G. Sullivan, A. E. Brewster, and B. K. Bradshaw. 1999. Californian salt marsh vegetation: an improved model of spatial pattern. Ecosystems 2: 19–35.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Álvarez-Rogel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Álvarez-Rogel, J., Martínez-Sánchez, J.J., Blázquez, L.C. et al. A conceptual model of salt marsh plant distribution in coastal dunes of southeastern Spain. Wetlands 26, 703–717 (2006). https://doi.org/10.1672/0277-5212(2006)26[703:ACMOSM]2.0.CO;2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1672/0277-5212(2006)26[703:ACMOSM]2.0.CO;2

Key Words

Navigation